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The relation between the lattice Boltzmann method, which has recently become
popular, and the kinetic schemes, which are routinely used in computational fluid
dynamics, is explored. A new discrete velocity method for the numerical solution
of Navier—Stokes equations for incompressible fluid flow is presented by combining
both the approaches. The new scheme can be interpreted as a pseudo-compressibility
method and, for a particular choice of parameters, this interpretation carries over to
the lattice Boltzmann method. © 1999 Academic Press
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1. INTRODUCTION

In the last decade, the lattice Boltzmann method has emerged as a potential altern
to other computational fluid dynamics techniques in simulating fluid flows numericall
The lattice Boltzmann method (LBM) was first introduced by McNamara and Zanetti [
to overcome the drawbacks of the lattice gas cellular automata (LGCA), which resul
from attempts to obtain macroscopic fluid flow simulations from the simplest possik
microscopic description using a discrete phase space. See Refs. [2—4] for reviews o
LGCA, Refs. [5, 6] for reviews of the lattice Boltzmann method, and [7] for a review of th
related idea of discrete velocity models.

Some authors noted the closeness of the lattice Boltzmann method to the kinetic sche
(see [8, 9]), which, like the lattice Boltzmann method, also use the Boltzmann equat
of kinetic theory as the starting point, but are aimed at solving the macroscopic equati
of fluid flow (see [10] for a review of kinetic schemes). Both methods exploit the fa
that the Boltzmann evolution is essentially equivalent to Euler or Navier—Stokes evolut
if the state is in or close to local thermodynamic equilibrium. While most of the kinet
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schemes were developed and routinely used for the solution of compressible equat
the lattice Boltzmann method operates in the incompressible limit. However, as we \
show in Section 2, the two methods even coincide for a particular parameter constellat
This implies that the observations which are valid for kinetic schemes also have a di
consequence on LBM. In view of these remarks it is surprising that the close relat
between the two methods is not fully appreciated. Our intention is to stress the remark
coincidence.

The first kinetic scheme was introduced more than two decades ago, by Sanders
Prendergast [11]. It is popularly known as theam schemeand, incidentally, is also a
discrete velocity method for simulating Euler equations. A few years later, an approacl
constructkinetic schemes for general hyperbolic systems of conservation laws was desc
by Hartenet al. [12]. Many kinetic schemes for the compressible Euler system based
the original Maxwellian distribution were developed afterwards by Pullin [13], Reitz [14
Deshpande and Mandal [15-17], Perthame and Coron [18, 19], Prendergast and Xu |
Xu et al. [21], and Raghurama Rao and Deshpande [22, 23]. For the isentropic EL
system, Kaniel investigated a kinetic scheme based on an equilibrium distribution func
which is different from the classical Maxwellian [24, 25]. A general approach to constrt
equilibrium distributions has been presented by Junk in [26] and by Perthame [27] w
uses an entropy principle. For the compressible Navier—Stokes system, kinetic sche
were developed by Chou and Baganoff [28] and in the group of Deshpande [29, 30]
slightly different approach was taken by Xu and Prendergast [31].

For scalar conservation laws in one space dimensank8i'and Dressler found equilib-
rium distributions following the idea of Kaniel [32]. In arbitrary space dimensions the scal
case could be treated with a slightly modified transport equation [33, 34]. This appro:
led to a detailed investigation of the relation between the hydrodynamic limit of kine
equations and nonlinear conservation laws by Lieial. [35].

In this paper, we present a new discrete velocity method based on the methodology o
kinetic schemes. In Section 2, the original concept of kinetic schemes for Euler equati
is introduced and then applied with a special equilibrium distribution known from tt
lattice Boltzmann method. After that, the obtained discrete velocity method is extende
the Navier—Stokes case by constructing a new discrete Chapman—Enskog distributio
Section 4, consistency of the resulting scheme is investigated, leading to an interprete
of both kinetic schemes and LBM as pseudo-compressibility methods. Section 5 conclt
with numerical results and discussions.

2. KINETIC SCHEMES FOR EULER EQUATIONS

2.1. Traditional Kinetic Schemes in CFD

The basis of kinetic schemes is the connection between the Boltzmann equation of kir
theory of gases and the macroscopic equations of fluid flow. The fluid flow equations
be obtained as (velocity) moments of the Boltzmann equation

of

¥+V~Vf:Q(f). @)
Here f (x, v, 1) is the velocity distribution function of the gas particles and the gradier
is taken with respect to the space variakleThe left hand side of Eq. (1) denotes the
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free flow of the molecules. This free flow is disturbed by the molecular collisions, whic
is represented by the collision terr®,( f), on the right hand side of Eq. (1). The mass,
momentum, and energy of the fluid can be obtained as the velocity averages of the patr
mass, momentum, and energy densities. Introducing the notation

(f) :/ / / fdvldvzdvg (2)
this can be formulated as
1 2
p=A(f), pu=(vf), pe= SVl f). 3)

The macroscopic equations can be obtained by integrating the Boltzmann equation (1),
multiplying it by the vector of the moment functions, as

v (iw.Vf—Q(f)) =0. 4)
12 ) \ Ot
31V
Using (3), we get the system
ad .
ait) +div pu = (Q)
a(aﬁU) +diviv@vf) = (vQ) (5)

a(pe) R T /1,
ot +d|v<2|v|vf>_<2|v| Q).
The mass, momentum, and energy are conserved during collisions. Therefore, we hav
1 2

Substituting (6) in (5) we obtain

ap .
— +d =0
8t+ ivou
d
WY | divvevi) = 0 )
d(pe) A TS .
ot +d|v<2|v|vf =0.

In the Euler limit, the gas is dominated by collisions and the particle distribution attains t
form of a Maxwellian, given by

_p Iv—ul?
M) = (ZnT)% exp(— 5T ) (8)
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This velocity distribution is well known as the one of a gas in (local) thermodynamic eg
ilibrium. Hence, the Maxwellian is also called tequilibrium distribution When the dis-
tribution is a Maxwellian, the fluxes in (7) can be calculated, yielding

1
VRVM)=puu+pTI and <2|v|2vM> = p(e + T)Hu, 9)
wherel is the identity matrix. Using the above, we obtain the Euler equations as

d
» + div(pu) =0

ot
%—l—div(pu@u—kpﬂ):o (10)
% +div(p(e + T)u) = 0

or equivalently in the form
v (+V-Vf> =0, f =M. (11)

While standard discretizations of the Euler system are based on (10), kinetic scheme:
the representation (11) which is motivated by kinetic theory. An obvious advantage of (
is the much simpler differential operator which is linear and scalar in contrast to the m
complicated nonlinear system (10).

To discretize (11), traditional CFD techniques like finite difference, finite volume, finit
element, or spectral methods can be applied. Equivalently, one can ukagiagian
approach In this approach, we replace (11) by the auxiliary problem

of

STTVVE=00 flo=M (12)

for which the solution is straightforward, given by
f(x,v,t) = f(x—vt,v,0). (13)

Clearly, this solution satisfies

However, the constraint = M is enforced only initially. The violation of this constraint
leads to an increasing error as time increases. By stopping the evolution after a small
step At and restarting it with a Maxwellian (that has the samei, e-moments as the
solution of the just finished free flow step), the error can be kept of akdegiving rise

to a first order method for the Euler equations. Thus, two clear steps can be identifiec
the Lagrangian approach: a convection step and a relaxation step. In the relaxation stej
velocity distribution relaxes completely to the equilibrium distribution.
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2.2. Kinetic Schemes with Discrete Distributions

While the kinetic schemes mentioned in the above subsection are designed to solve
Euler system, it is not necessary to be limited by this restriction. Also, the choit¢ a$
equilibrium constraint is not mandatory. Obviously, the approach is applicable whenever
system of equations allows a representation of type (11). In the following, we are goinc
restrict our considerations to the case of isothermal Euler equations, in order to work out
similarities with the lattice Boltzmann method. The isothermal equations Wity = c2
wherecs is the sound speed) are of the form

‘3—’; +div(pu) = 0
(14
d(pu)
at

<< )(%H/ vf)>=0’ f = Mirr,. (15)

Instead of the classical Maxwelliait (with fixed temperatur@ = Ty), we can also choose
any distributionF, as long as the integral expressions in (15) together with the constra
f = F are equivalent to the Euler system (14). Since the integral involves velocity mome
up to second order, we are led to the following compatibility conditions on the equilibriu
distribution

+div(pu®u+cZpl) =0

or equivalently

(F)=»p
(VF) = pu (16)
(V®VF) = pu®u+c2pl.

In particular, we are interested in discrete velocity distributiBnghich satisfy these mo-
ment constraints (see also the works of Sanders and Prendergast [11], Nadiga and F
[36], and M. Junk [37, 38]. An explicit example in 2D is given by the so-called D2Q
distribution used in the lattice Boltzmann method. It is of the form

8
Fo,u;v) = Fi(p, w8V — ), (17)

i=0

wheres is the Dirac-delta function and

Vo=0
vi = v3efco((i — DI),sin(( —DZ))',  i=1...4 (18)
= v6es(cos((i — 2) %), sin((i — g)%)) i=5,...,8

The weightsF; are given by

. 1 1
Fi(p,u)=Fip(l— Slul? +gu-vit ch(U'Vi)z) (19)
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with
., 4 .1 . 1
FO=§, F, =§for|=1,...,4, F =§5for|=5,...,8. (20)

In order to obtain a kinetic scheme for the isothermal Euler equations, we will approxim

the equivalent form
Ly(of +v-Vf)])=0 f=F (21)
v\ at -7 N

with the Lagrangian approach described in the last section. Solving the free flow ec
tion % +v-Vf =0, starting at time with equilibrium f (x, v, t) = F (o (X, t), u(x, t); v),
yields after a time stept

f(X, v, t 4+ At) = F(p(X — VAL, t), u(x — VAL, t); v)

8
=Y Fi(p(X— VAL 1), u(X — VAL, 1)5(V — V;).
i=0
Usingtherelations (v)§ (v — vj) = ¥ (vi)d (v — Vj), which holds for any continuous function

Y, we obtain further

8
f(X,V,t+ At) = Z Fi(p(X — ViAt, t), U(X — Vi At, 1))8(V — V).
i=0

Denoting the weights of the discrete distributib(x, v, t + At) by f; (X, t + At), the evo-
lution can also be described without mentioning the Dirac deltas at the (fixed) discr
velocities

fix,t + At) = F(p(X — Vi AL, 1), u(X — vj At, 1)), i=0,...,8 (22)
Since integer multiples of; At make up a regular square grid which is invariant unde
vj At-translations, the scheme (22) only accesses nodal daia ilso a node of the grid.
We remark that the grid length is given by
AX = v/3csAt. (23)

The connection between (22) and the classical lattice Boltzmann method becomes 1
obvious under the change of variables> x + v; At, which leads to

fix +VviAt, t + At) = F(p(X, 1), u(x, t)), i=0,...,8 (24)
Indeed, (24) coincides with the lattice Boltzmann evolution [39, 40]
At
fix+ViAt t 4+ At — fi(x, 1) = t—(Fi X, t) = fi(x, 1)) (25)
R

if we settg = At (see Refs. [39, 40] for the LBM based on the BGK-model). At firs
glance, this seems to be a contradiction, because the kinetic scheme has been set up 1
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Euler system while it is known that the lattice Boltzmann method approximates the Navi
Stokes system. In fact, settibg—= At amounts to a high dose of viscosity (typically, LBM
applications are run witty in-betweer% At andAt). The apparent contradiction is resolved
with the remark that the Lagrangian approach to kinetic schemes yields only a first or
method. The numerical viscosity of that scheme is quite high, particularly in applicatio
with low Mach number flows. This numerical viscosity of the kinetic scheme is exactly tl
viscosity corresponding tty = At in LBM and thus has a physically correct structure. In
[38], a kinetic scheme for the Euler system could therefore be used as solver for the Nav
Stokes equations. Huargg al. [41], in their lattice Boltzmann method for compressible
flows, used a similar approach, even though they did not mention kinetic schemes.

3. EXTENSION TO NAVIER-STOKES EQUATIONS

Kinetic schemes can also be extended to the case of Navier—Stokes equations, b
ing a Chapman—Enskog distribution functi#ag instead of the Maxwellian constraintt
in (15). This approach has been pursued in [28-30]. The Chapman—Enskog distribu
function Fce is obtained as a small perturbation of the Maxwellian. See Refs. [42, 4
15, 44] for details of the derivation. For a mono-atomic gas in three dimensions, the dis
bution function is of the form

P,j 1 G 1 2 c?
f = 1—77 Ci — — —GC; 1—77 s 26
ce M[ p 21 ¢ pTC'< 52T (26)
where
oT aU; 8Uj 2 dug
= —K —, Pi = — —_— 4+ — — =§ji — 27
G 8Xi 4 M(an + 8Xi 3 4 BXk) ( )

andc=v —u is the peculiar velocity. Here, we will again consider the simpler case
isothermal equations in 2D. Following [45, 37], the equations are of the form

ap

div(pu) = 0,
at+ (pu)

(28)
d(pu)
at

+div(pu®u+cZpl) = div,

where the viscous stress tensor is given by

_ 1/0u  ou;
n=vp(2S+ (divu)l), S :2<axl-+8x-]>'
] 1

(Note that diw is the vector obtained by applying divergence to the rowg)dquivalently,
we can write system (28) as

<($)(%+V'Vf)>=°f f = Fee (29)
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whereFcg satisfies the moment constraints

(Fce) =p
(VFcg) = pu (30)
(V® VFcg) = pu®u+c2pl — 1.

Instead of using the continuous distribution functi®pe (given in (26) withgi =0 and

T =Tp), we construct a discret&ce satisfying (30). One possibility is to discretize the
classical Chapman—Enskog distribution function in the velocity variable. A kinetic schel
based on this approach will be presented elsewhere [46]. Here, we follow a different i
based on a general solution technique for moment problems of the form (30) which u
orthogonal polynomials [26]. For the special D2Q9 model, however, it is not necessary
work out the general ideas. In fact, conditions (30) can be reduced to those of the E
system if we replaceu ® u by pu ® u — . This observation can be used, if we write the
weights (19) of the equilibrium distribution function (17) in termspaf® u. Introducing
the matrix product

2

A:B=) AjB;

ij=1
we find

2
URUIVRV = Z Uiujviv; = (U-v)?
ij=1
and

2
uu:l = Z Uiujdij = u|?
ij=1

so that (19) can be written as

1 1 1
Fi(p,u) = Fi*p<1+ C—gu-vi +2—C§u®u. <c§vi Vi — I)>

Replacingu ® u by u® u — v(2S+divul), we finally obtain

Fce,i(po, U)

1 1 ) (1
= Fi*,o<1+ C—§u~vi +2—C§(u®u—2v8—vdlvul). <c§vi QVj — I)) (32)

or after going back to scalar productsinandu,
1 1 1
Feei(p.u) = Fp( 14+ Su-vi — — Ul + == (u-v;)?
ce,i(p, U) |,0< +C§ i 2C§| | +ZC§( i)

v v 1
——S:vi®V — —di —vi?=2)). 32
d Vi ® Vi Z IVU<2C§IV.| >> (32)



186 JUNK AND RAO

It is easy to check that the so defined Chapman—Enskog distribution

8
Fee(p, Ui V) = Y Feei(p, WSV — Vi) (33)
i=0

satisfies (30). We also remark thage is a perturbation of the original D2Q9 equilibrium
distribution, similar to the classical case in kinetic theory where (26) is a perturbation
the Maxwellian (8).

To develop a kinetic scheme for Navier—Stokes equations, we follow the same procec
asinthe previous section, except that the distribution used as constraint after every time-
will now be the Chapman—Enskog distributidise. We end up with the scheme

fi(x, t + At) = Fcei(p(X — Vi AL, t), u(X — Vi At, t)), i=0,...,8 (34)

where the moments are updated according to

8
p(X, t+ At) = Z fi(X,t + Ab)
=0 (35)

8

1

ux, t + At =7§ vi fi (X, t + At).
( ) p(X, t+ At) & i )

4. THE INCOMPRESSIBLE LIMIT

To investigate the behavior of the kinetic scheme at low Mach numbers, we first sc
the compressible Navier—Stokes system appropriately. Low Mach number flows appe:
u is very small compared t. Taking a typical speed and length scale of the flow, the
time scale® is chosen in accordance to these scales as

0=—.
U
The density isassumedto be of order one so that no scaling is needed. To avoid superscr
we will not change the symbols for scaled functions and variables. If we refer to unsca
guantities (which appear less often in this section), we add a hat to the symbols. After s
algebra, we obtain the scaled version of (28)

dp OU
— + ——div(pu) = 0,
st T (pu)
a(pu) OU . co_ 0 .
ot + lev(pu ®u) + LU Vo = Fd|vn.

By assumption@U /L =1 andc?® /(LU) = c2/U2. Introducing the Mach number Ma
U/cs and the Reynolds number ReU L /v of the flow, we end up with

a
a—'(: + div(pu) =0,
a(pu) 1 1 (36)
0 . . .
ot + div(pu ® u) + Va2 Vo= R—ed|v(2,oS+ pdivul).
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If we approximate (36) by the kinetic scheme introduced in (34), then the time step is rele
to the grid length byAf = ARX/(v/3cs) (see (23)), or in scaled quantities

1
At = —MaAX. 37
3 (37)

This relation already indicates the typical problem that any explicit solver for the compr
sible equations faces in the incompressible limit: to get a reasonable space resolutior
time resolution must be extremely fine (if Ma 1) to satisfy the CFL-condition (37).

To find out which equations are approximated by the kinetic scheme, we performac
sistency analysis in the coupled limitt, Ma— 0. More precisely, we assume

At

—— = A = const forAt — 0,Ma — 0. (38)
Ma?

To begin with, let us rewrite the Chapman—Enskog distribution (31) in scaled quantities
Fee,i(p, W)
. ) Ma? 1 : ’
=F'p|1+Mau-v +7 U U — R—e(28+d|vul) D (Matvi ®vi — 1) ).
(39)

SettingFce(p, U; V) = Zis:(, Fcei(p, W (v —vj) and usingo (x) andu(x) as initial values,
the kinetic scheme yields at the end of the first time step

pt(X) = (Fce(p(X — VAL), u(X — VAL); v)) (40)
and
(ptuh)(x) = (VFce(p (X — VAL), U(X — VAL); v)). (41)

To obtain a Taylor expansion around = 0 we needAt-derivatives of (40) and (41) up to
a certain order. Obviously, eaett-derivative leads to a space derivative withi as factor
(i.e., 9/dAt = —v;(3/9%)). To get first order consistency int, we nevertheless need
higher At-derivatives. This is due to the fact that terms of the faxtf/Ma?, At2/Ma’,
andAt3/Ma* are not negligible in the coupled limit (38). Consequently, we also need high
orderv-moments of the Chapman—Enskog distribution. Taking the scaling into account,
get from (30)

(Fce) =p
(VFcg) = pu (42)

1 1
VROVFcE) = pu®u+ —spl — —(20S divul).
(V®VFcE) = pu® +Ma2p Re(p +p )

The third order moment can be calculated using the explicit foriegfgiven in (39). We
find

1
(vivjucFeg) = Wﬂ(&juk + ikUj + Skjui). (43)
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Finally, from the fourth and fifth order moments we only need to know the terms of leadi
order

1 1
(vivjokv Fcg) = M—a4;0(5ij Sk + Sikdji + didjk) + O(M—az)
(44)
1
T Fce) =0 — ).
(vivjvkv vmFcE) (Ma4)
The Taylor expansion of (40) is then given by

2

d
pt = (Fce) — — (viFce) At + (vivj Fcg) At?

9X%; EaXiE)Xj
1 9

— s (vivivFeR A 4 -
63Xian3Xk<vleUk ce) +

Since

At?
(vivjFeg) At? = Wpaij + O(AtY)
At3
(vivjcFeg) A3 = O<|v|a2> = O(At?) (45)

A4
(vivjuky FCE>At4 = O(W) = O(Atz)

we conclude
ot=p+ (;)»Ap - div(pu)> At + O(At?). (46)

Similarly, we get for the momentum defined in (41)
(o' = (0 Fee) — (o Fe AL+ = (v uFep AP
1Y | = (VI FCE %, iVl FCE 23Xi8Xj ivVju FCce

1 98

— ———(Vj v; Fep) At + ...
68Xiaxjaxk<U|U1UkUI CE) +

While the second order moments yield exactly the fuxes of momentum, the third or
moments give rise to some additional terms. Using (43),

1 92

1 9
2 9% 0% (vivju Fcg) <2 (puw) + ™ |v(,ou))

According to (44), the fourth order moment leads to

1 ( Fce) At3 A% D ApAt +0O At
——————(vivjwY =——— —

6 9% XX KHITCE 2 ax P Ma?
and fifth order moments are negligible since

At?
(vivj vk vaCE)At4 = O<Ma4) = (D(Atz).
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Thus
ut = puy + 1kA( u)+k—d|v( u)—EiA —i( ) — L
p U= o4y 2 pPU 1Y 2 9% P PUY; Ma23X|
1 1 9 U 2
=2 — - At + O(At 47
+ Reaxl( PSD + Reodx ( aX%; )) +OA). (47)

Since we assume that all appearing quantities are scaled, the equapdnfoan only be
balanced ip/dx = O(Ma?). Hence, we assume that= p(1+ Ma?p) for some constant
o > 0and afunctiorp which is assumed to be of order one together with its derivatives in tt
limitunder consideration. (Thisis the standard scaling of the density inisothermal, low Me
number flows.) Using the additional information prand observing that Ma= O(At),

we can simplify (46) in lowest order to

divu = O(At). (48)

This equation has to be understood in the sense that the order one assumptiandn
p is only consistent if the divergence aofis O(At). Before we explain how the kinetic
scheme guarantees the approximate divergence-free condition, we note that relation
and the structure gf reduces (47) to the Navier—Stokes equation with a first order err
term

u 1 1
<= VW+Vp= |- += .
o T VIu+Vp= <Re + 2x> Au+ O(A) (49)

To explain the mechanism that leads to (48), we use (46) again, keeping the first order te
After division by At and M& this leads to

ap 1 1 At?
— +div(pu dIVU— AA o ——s |.
ot T AV(PW P+ <AtMa2>

To resolve the additional terms of order one on the right hand side, we have to expand
one order higher. Using the explicit knowledge of the relevant moments, relation (48), ¢
our assumption op, we find

op 1
E +(Uu-V)p -|— dIVU = f/\Ap +div((u - V)u) + O(A1).

Note that equations of this type are usepseudo-compressibility methdds, 48] to ensure
the divergence free condition. In fact, it uses elements of Chaitifécial compressibility
method49] to replace diw = 0 by the equation

ap .
— +divu=0
€ ot +
and of the pressure stabilization method

divu—eAp=0
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which was originally used by Hughes al. [50]. However, the convection term and the
nonlinear term which follow automatically from the kinetic approach are usually not co
sidered. We thus conclude thiatthe coupled limitAt, Ma— 0 with At/Ma? =  with the
assumption thap = p(1+ Ma?p) and thatu, p and their derivatives are order one func-
tions the kinetic scheme is consistent to the incompressible Navier—Stokes equation
effective Reynolds number

1 1 X

Ré Re' 2
The scheme can be viewed as a new pseudo-compressibility method.

Note that in the case Re oo, the Chapman—Enskog distribution reduces to a Maxwellia
and the kinetic scheme is equivalent to the lattice Boltzmann method with relaxation
rametertg = At. Therefore, LBM can also be viewed as a pseudo-compressibility meth
in that case. Since an additional viscosity term appears in the coupledNimiila— 0,
the kinetic scheme with = O still approximates the solution of an incompressible Navier-
Stokes equation. As already mentioned earlier, this idea has been used in [38] to cons
Navier—Stokes solutions with a kinetic scheme which is just based on a discrete Maxwell

5. NUMERICAL RESULTS AND DISCUSSIONS

We first note that the term involving divin the Chapman—Enskog distribution (32) is
actually not important in low Mach number situations and thus can be neglected. N
that such modifications are very simple in the framework of kinetic schemes: by adding
deleting termsin the distribution function, the macroscopic equations can easily be modif
In the case of LBM, on the other hand, the Chapman—Enskog distribution is implicitly giv
through properties of the collision operator which makes it much harder to develop si
schemes for modifications of the incompressible Navier—Stokes equation.

We adjust the viscosity parametein the Chapman—Enskog distribution such that the
effective viscosity turns into the required one. This prevents the numerical viscosity fr
spoiling the results of the simulations. Altogether, we base our kinetic scheme on
following distribution function (which is now written again in unscaled variables)

u-v 1 1 At Vi QV;
——ZIUI2+—4(U~vi)2—(12——>S: € '>.
cZ cs C

Feei(p, u) = Frp( 1+ ——

CE,I(;O ) i ,0< + Cg 2 2 Cg

In a first test case, we apply the scheme to a Poiseuille flow in an infinitely long channel
xz-direction) of width one with a constant acceleratipithe incompressible Navier—Stokes

solution for this case is explicitly known to be
g -
Ui(Xe) = 5(1 —X2)X2, Uz=0 (50)

with a constant pressure. In our simulation we choesel initially. The infinitely long
channel is modeled by periodic boundary conditions inxhelirection. The fixed wall
conditions foru are enforced simply by setting= 0 at the boundary nodes. In contrast
to LBM, where the no-slip condition has to be enforced by properly setting the incor
ing occupation numbers, no such complications are found here, because the unknow
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the kinetic scheme are directly the flow variabesindu. The boundary conditions for
density can be obtained from the Navier—Stokes equation (28). Multiplying the equat
with the outward unit normal vectarand observing that = 0 at the boundary, we get the
condition

a .
cgﬁ =n-divy. (51)

For the exact solution (50) one easily checks that

divy = —vpg(é)

so thatn-divy =0 at the upper and lower walls giving rise to homogeneous bounda
conditions forp. (According to [47], homogeneous Neumann conditionsdare also
reasonable in more general, moderate flow situations.) The force term is incorporated
our scheme by a splitting approach: in a first step the kinetic scheme approximates
Navier—Stokes evolution and in a second step, the acceleration is taken care of b
explicit Euler step for the velocity variable. To calculate the stress tefsee use central
differences.
From the solution (50), we can see that the maximum velocity

_9
8v

is obtained at the center of the channel. By seftjrg0.01 andv = 0.01, we getU =0.125
(note thau is the Mach number sinag = 1). With 11 points across the channel and initial
velocityu = 0, we find a numerical approximation which reproduces the predicted parabc
shape (see Fig. 1). The other velocity component stays zero and the density remains con
Due to the symmetries in this simple test case, the incompressibility condition is satis
exactly. Consequently, compressibility errors are not present and the accuracy of the sct
just depends on how closely the steady state is approximated. For several valuie of
IL*° error behaves as depicted in Fig. 2. In all calculations, the number of grid points is
andU =0.125. The next test case is a slight modification of the previous one, where
top wall of the channel now moves with a fixed velocityin x;-direction (Couette flow).

U

0.12 + T .

0.08 4 ? g

004 b f %

0 02 04 06 08 1

FIG. 1. Poiseuille velocity profile.
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FIG.2. L>-error versus time.

Here, the exact solution differs from (50) by an additional linear term

9

> (1 — Xo)X2 + wXo, u, =0. (52)
vV

Ui(X2) =
Again, theu-boundary condition at the moving wall is easily enforced by setting w and
u, = 0. Using the same settings as above witk- 0.12 the results are again in agreement
with the exact solution (see Fig. 3). Our final test case is the driven cavity flow problem. T
incompressible fluid is now bounded by a square enclosure with side length one. The toy
which moves with velocityJ, generates the fluid motion in the cavity which shows typica
vortex phenomena. For our calculations we use ax1299 uniform grid and Reynolds
numbers 100, 400, and 1000. The lid velodityis set to one ands =10 in all cases. The
calculations are initialized withh = 1 andu = O inside the cavity. As termination criterion
we choose aresidue fall of 3.75 decades in the equatign fbine typical number of cycles
to get steady state solutions is 100,000. We remark that no special attention has been p
acceleration of convergence. Our aim is only to show that the new discrete velocity met
works for complex test problems. (Note that the pressure develops singularities in the
corners due to the jump in the boundary conditions for velocity.) In order to demonstr

0.2 | T

T
re/“é ol

0.16 .

0.12 + / 3
008 F / 4

0.04 [/ .

) | | 1

0 02 04 06 08 1

FIG. 3. Velocity profile for Couette flow.
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FIG. 4. u;-velocity along a vertical line through the center of the cavity.

that the kinetic scheme can be used like a lattice Boltzmann method we implement
boundary conditions using the fastunce baclalgorithm [51]. To explain this approach
we remark that on the kinetic level, boundary conditions are required for the transport |
of the equation

of

ﬁ+v~Vf_O. (53)
Since (53) is a linear hyperbolic equation, information has to be provided for those chat
teristics which enter the domain at a boundary. In our model, the characteristics are strz
lines along the discrete velocity directioms- - - vg. The bounce back condition sets the
value for the information of an incoming direction equal to the information that leav:
the domain in the opposite direction, which is easily available due to the symmetry of
discrete velocity set. It can be shown [51] that these conditions simulate no slip conditi
at the Navier—Stokes level. At the upper lid, a modification is required which takes care
the momentum flux generated by the movement [52]. To illustrate our results, the horizo
velocity component; is shown along a vertical section through the center of the cavi
(Fig. 4). Similarly, we plot the vertical componemf along the central horizontal section

0.4 —=—
03| & B ReslOd ——

RN Re=400 --------
2. Re=1000 -

-0.2

FIG. 5.

l'-.
03 Yo /8
_ L X /b
0.4 g
05
206 ] ! ! ]

u,-velocity along a horizontal line through the center of the cavity.

0 0.2 04 0.6 0.8 1
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.

(Fig. 5). The results are compared with those obtained by &théh [53] and they are in
good agreement. In Figs. 4 and 5, the symbols refer to the tabulated simulation resul
[53] and the lines refer to the results obtained by the new kinetic scheme. Plots of the str
functions are given in Figs. 6—8. We remark that the stream fungti strictly speaking,
not well defined because the approximate velocity field is not exactly divergence free

FIG. 6. Re=100.

FIG. 7. Re=400.
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[45], this problem is discussed for the lattice Boltzmann method and we use the propc
numerical procedure for the calculation¥f(integration ofu, along horizontal sections

from left to right). The levels of the isolines are those from [53]. We limit ourselves in th
study to the use of uniform grids, as our purpose is to show that the new discrete velo
method works. With clustered grids, the solution can be different [54]. The numerical ¢
of the kinetic scheme is directly comparable to that of the lattice Boltzmann method ba
on the D2Q9 model. Both algorithms have the same structure consisting of a propage
and a collision step. The only difference is that in the kinetic scheme the stress tensor
to be calculated (by taking central differences of the velocity field) and that the equil
rium distribution is extended by the viscosity term. On the other hand, the kinetic sche
needs less memory because there is no need to store the occupation numbers. Apart
two copies ofp andu (new and old time step) an efficient implementation requires thre
more variables to store the stress tensor. Altogether a 2D computation needs nine f
ing point variables per node, independent of the underlying number of discrete velocit
Compared to that, D2Q9 lattice Boltzmann methods need 21 variables per nodeyfor

and two copies of the occupation numbdégs. . ., fg) and the number increases if methods
with more velocities are used. Also, when passing over to 3D calculations, the mem
usage of the kinetic scheme increases by five variables per site whereas D3Q15 |a
Boltzmann methods need 13 more variables in each node. Of course, the discrep
becomes even larger if multi-phase flows are simulated. Then, for simple algorithms,
memory requirement has essentially to be multiplied by the number of participating spec
Taking these considerations into account, kinetic schemes seem to be a powerful altern
to lattice Boltzmann methods. On the one hand, they are formulated in the same kin
framework allowing the use of LBM specific solution techniques (kinetic boundary conc
tions, treatment of phase boundaries in multi-phase flows, etc.). On the other hand, kir
schemes only use the actual flow variables and thus can profit directly from established f

2)

FIG.8. Re=1000.
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difference or finite volume methods. In addition, the memory consumption is greatly redu
compared to lattice Boltzmann algorithms.

Since the idea of LBM is to use a kinetic model which is as simple as possible unt
the constraint that the macroscopic limit equations are correct, the method is not cap
of quantitatively predicting the behavior of a rarefied gas and should therefore only
applied close to equilibrium situations. To show consistency of LBM to the Navier—Stok
equation, exactly this equilibrium assumption is used inGhapman—Enskogxpansion
which amounts to assuming that the occupation numbers are given by a Chapman—En
distribution. A natural idea is therefore to build the Chapman—Enskog distribution direc
into the algorithm which is exactly the construction principle of the present kinetic schen
Thus, kinetic schemes can be viewed as a consequent advancement of the lattice Boltzi
method.

We conclude our discussion with a remark concerning the extension to the full Navi
Stokes system including the energy equation. A fundamental problem of the basic lat
Boltzmann method based on a simple BGK collision operator is that the Prandtl num
is not a free parameter. In a kinetic scheme, the heat conduction and viscosity param
enter directly into the Chapman—Enskog distribution (similar to the continuous case (2
and thus can naturally be varied independently.

6. CONCLUSIONS

The similarities and differences between the lattice Boltzmann method, which has
cently become popular, and the kinetic schemes, which are routinely used in computati
fluid dynamics, are studied. A new discrete velocity method for the numerical simulation
incompressible Navier—Stokes equations is presented by combining both the approa
This approach of kinetic schemes with discrete distributions is shown to be more con
nient and useful compared to the lattice Boltzmann method. Since both methods coin
for a particular choice of parameters, the analysis of the kinetic scheme also applies
rectly to LBM in that case. In particular, the conclusion that the kinetic scheme is a spe
pseudo-compressibility method illuminates the lattice Boltzmann approach.
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